基于QTRAP UPLC-MS/MS的乌药不同部位中生物碱、内酯类和黄酮类成分分析

罗益远, 陈宏降, 杨颖欣, 蔡红蝶, 包佳敏, 周根, 明梓扬, 陶文涛, 彭昕

中国药学杂志 ›› 2021, Vol. 56 ›› Issue (11) : 891-896.

PDF(1410 KB)
PDF(1410 KB)
中国药学杂志 ›› 2021, Vol. 56 ›› Issue (11) : 891-896. DOI: 10.11669/cpj.2021.11.006
论著

基于QTRAP UPLC-MS/MS的乌药不同部位中生物碱、内酯类和黄酮类成分分析

  • 罗益远1, 陈宏降1*, 杨颖欣1, 蔡红蝶1, 包佳敏1, 周根2, 明梓扬1, 陶文涛1, 彭昕3
作者信息 +

Comparative Analysis of Alkaloids, Lactones and Flavonoids in Different Parts of Lindera aggregate (Sims) Kosterm. by QTRAP UPLC-MS/MS

  • LUO Yi-yuan1, CHEN Hong-jiang1*, YANG Ying-xin1, CAI Hong-die1, BAO Jia-min1, ZHOU Gen2, MING Zi-yang1, TAO Wen-tao1, PENG Xin3
Author information +
文章历史 +

摘要

目的 建立超高效液相色谱-串联四级杆/线性离子阱质谱(QTRAP UPLC-MS/MS)同时测定乌药中生物碱(去甲异波尔定、波尔定碱)、内酯类(乌药内酯、乌药醚内酯、异乌药内酯、乌药醇、去氢木香内酯)和黄酮类(儿茶素、表儿茶素、异槲皮苷)成分的方法,比较乌药不同部位中各成分的含量差异。方法 样品经甲醇超声辅助提取,稀释后采用ACQUITY UPLCRHSS T3(2.1 mm×100 mm,1.8 μm),保护柱:Cartridge Guarde Colume E Inertsil ODS-SP(4.0 mm×10 mm,5 μm);以水(含0.1%甲酸,A相)-乙腈(B相)为流动相;梯度洗脱,柱温35 ℃,流速0.2 mL·min-1,进样量5 μL。采用电喷雾离子源(ESI),多反应离子监测(MRM)扫描方式进行检测。结果 10种目标化合物在一定浓度范围内均呈良好的线性关系,相关系数大于0.991 6,精密度、重复性和稳定性良好;加样回收率在99.13%~103.07%,RSD值均小于5%。结论 所建立的方法简便、灵敏度高、重现性好,可用于乌药中多元功效物质的同时测定,为乌药药材内在质量的综合评价和综合利用提供新的方法参考。

Abstract

OBJECTIVE To develop a comprehensive analytical method based on QTRAP UPLC-MS/MS for simultaneous determination of three kinds of components in Lindera aggregate (Sims) Kosterm(L. aggregate). METHODS The samples were extracted by methanol aided with ultrasound, diluted and then separated on a ACQUITY UPLCRHSS T3(2.1 mm×100 mm,1.8 μm)column, with Cartridge Guarde Colume E Inertsil ODS-SP(4.0 mm×10 mm,5 μm) as protection column. The mobile phase was composed of acetonitrile-water (0.1% acetic acid) and eluted at a flow rate of 0.2 mL·min-1. The target compounds were analyzed by multiple reactions monitoring (MRM) mode. RESULTS The assay for the ten components had good linearity, the linearity of the detected components was greater than 0.991 6 and the limits of detection were all satisfying. The average spiked recoveries for the compounds were between 99.13% and 103.07%, and the relative standard deviations were less than 5%. CONCLUSION The established method is simple, sensitive, accurate, and suitable for determination of ten components in L. aggregate, which can provide a reliable and effective technique for the quality control of L. aggregate.

关键词

乌药 / 超高效液相色谱-串联四级杆/线性离子阱质谱 / 生物碱 / 内酯 / 黄酮

Key words

Lindera aggregate (Sims) Kosterm / QTRAP UPLC-MS/MS / alkaloid / lactone / flavonoid

引用本文

导出引用
罗益远, 陈宏降, 杨颖欣, 蔡红蝶, 包佳敏, 周根, 明梓扬, 陶文涛, 彭昕. 基于QTRAP UPLC-MS/MS的乌药不同部位中生物碱、内酯类和黄酮类成分分析[J]. 中国药学杂志, 2021, 56(11): 891-896 https://doi.org/10.11669/cpj.2021.11.006
LUO Yi-yuan, CHEN Hong-jiang, YANG Ying-xin, CAI Hong-die, BAO Jia-min, ZHOU Gen, MING Zi-yang, TAO Wen-tao, PENG Xin. Comparative Analysis of Alkaloids, Lactones and Flavonoids in Different Parts of Lindera aggregate (Sims) Kosterm. by QTRAP UPLC-MS/MS[J]. Chinese Pharmaceutical Journal, 2021, 56(11): 891-896 https://doi.org/10.11669/cpj.2021.11.006
中图分类号: R284   

参考文献

[1] Ch.P(2020). Vol Ⅰ(中国药典2020版.一部)[S]. 2020: 79.
[2] LI P. What will the new "ZHEBAWEI" bring to the related Chinese medicinal materials industry [N]. Taizhou Daily(台州日报), 2018-03-09(004).
[3] XING M Y, TIAN C M, XIA D Z. Review on chemical constituents and pharmacological effects of Lindera aggregata Kosterm[J]. Nat Prod Res Dev(天然产物研究与开发), 2017, 29(12):2147-2151.
[4] ZHAO J B, LU X H, XU X D, et al. Chemical constituents of leaves of Lindera aggregata (Sims) Kosterm[J]. Chin Pharm J(中国药学杂志), 2012, 47(21):1702-1705.
[5] WU Y, ZHANG Y, LIU X, et al. Separation and quantitative determination of sesquiterpene lactones in Lindera aggregata (wu-yao) by ultra-performance LC-MS/MS[J]. J Sep Sci, 2015, 33(8):1072-1078.
[6] HONG H, DU W F, KANG X J, et al. Qualitative comparison of chemical constituents from root and taproot of Lindera aggregata based on UPLC-Triple-TOF MS[J]. J Chin Med Mater(中药材), 2020, 43(3):615-620.
[7] LIU Z L, CHU S S, JIANG C H, et al. Composition and insecticidal activity of the essential oil of Lindera aggregata root tubers against sitophilus zeamais and triboliumcastaneum[J]. J Essential Oil Bear Plants,2016, 19(3):727-733.
[8] CHEN H J, CAI X Q, XIANG J X, et al. Study on the medicinal value of root and leaf of Lindera aggregata (Sims) Kosterm[J]. Zhejiang J Integr Tradit Chin West Med(浙江中西医结合杂志), 2014, 24(6):563-565.
[9] ZHOU Y Q, CHEN Q H, HONG K J. Research on medicinal parts of Linderae Radix[J]. Lishizhen Med Mater Med Res(时珍国医国药), 2014, 24(6):563-565.
[10] DU W F, YUE X K, WU Y, et al. Analysis of different forms Linderae Radix based on HPLC and NIRS fingerprints[J]. China J Chin Mater Med(中国中药杂志), 2016, 41(19):3551-3556.
[11] HUANG K Y, SHU J N, OUYANG R, et al. Quality comparison of different from Lindera Radix[J]. Chin J Mod Drug Appl(中国现代药物应用), 2010, 4(19):1-3.
[12] ZHANG S, CONG H L, YU B. Development of ultra-performance liquid cheromatograpgy and its application in the field of analysis[J]. Anal Instrum(分析仪器), 2017, 16(6):16-27.
[13] ZHANG Y, LI F T, HAN M X, et al. Analysis of metabolites of protopanaxatriol saponins in human intestinal flora by RRLC-Q-TOF MS and UPLC-QQQ MS[J]. J Chin Mass Spectrom Soc(质谱学报), 2020, 41(1):66-75.
[14] ZHANG J, ZHAN Y Z, LI X Z, et al. Non-targeted metabolite profiling for quality evaluation of Glechoma longituba from different geographical origins by UPLC/QTOF-MSE combined with chemometrics methods[J]. Chin Pharm J(中国药学杂志), 2018, 53(12):1003-1010.
[15] LI J H, YANG T G, ZHANG N, et al. Rapid identification of chemical constituents in the seed of Rosa roxbyrghii by UPLC-Q-TOF-MSE cobined with UNIFI informatics platform[J]. J Chin Mass Spe Soc(质谱学报), 2020, 41(1):76-86.
[16] LUO Y Y, CAI H D, SHA X X, et al. Analysis of volatile components in different parts of TAIWUYAO by GC-MS[J]. J Chin Med Mater(中药材), 2019, 42(6):1319-1322.
[17] CAO N, GUO W J, TANG J Y, et al. Effects of the total flavonoids from Folium Linderae on lipid metabolism in mice with hyperlipidemia fatty liver[J]. Tradit Chin Drug Res Clin Pharm(中药新药与临床药理), 2011, 22(2):149-153.
[18] XU Z, ZHAO L, YANG X, et al. Mmu-miR-125boverexpression suppresses NO production in activated macrophages by targeting eEF2K and CCNA2[J]. BMC Cancer, 2016, 16(1):252-261.
[19] TANIGUCHI K, WU L W, GRIVENNIKOV S I, et al. Agp130-Src-YAP module links inflammation to epithelial regeneration[J]. Nature, 2015, 519(7541):57-64.
[20] GAN L S, ZHENG Y L, MO J X, et al. Sesquiterpene lactones from the root tubers of Lindera aggregata[J]. J Nat Prod, 2009, 72(8):1497-501.
[21] TAN M M, ZHANG H, WANG J W. Protective effects of linderae on alcoholic-induced acute liver injury in SD rats[J]. Acta Univ Med Anhui(安徽医科大学学报), 2015, 50(12):1773-1775.

基金

浙江省中医药优秀青年人才基金项目资助(2019ZQ041);宁波市自然科学基金项目(2018A610434,2019A610414);浙江中医药大学省重点建设高校优势特色学科(中药学)开放基金资助(ZYAOX2018025,ZYAOX2018028);浙江省大学生科技创新活动计划暨新苗人才计划项目资助(2019R458003,2020R424003)
PDF(1410 KB)

267

Accesses

0

Citation

Detail

段落导航
相关文章

/